
29th Aerospace Testing Seminar, October 2015 

System Level Integration and Test  

Leveraging Software Unit Testing Techniques 

 
Ryan J. Melton 

Ball Aerospace & Technologies Corp. 

Boulder, CO 

 

ABSTRACT 

 

Ever try to decipher or debug a huge automated test procedure?  Integration and Test (I&T) 

procedures have historically been organized as a single large file that might include a rough 

menu system. Software unit testing frameworks solve this problem by breaking down testing into 

small individual methods that are designed to be easily understood with each method testing a 

minimal set of functionality.  Using these philosophies, test procedures can be broken down into 

Test Suites (high level testing such as an entire environmental test), Test Groups (testing often 

devoted to a specific subsystem such as a mechanism), and Test Cases (a specific test of a feature 

or requirement of the given subsystem).  Adding on to this organization with features such as 

automated test report generation, standardized meta data collection (unit serial number, operator 

name, etc), and loop testing (executing the same test repeatedly to wring out timing and other 

issues), produces an extremely powerful system level integration and test solution.   This paper 

discusses realizing these benefits using COSMOS, Ball Aerospace’s recently open sourced 

ground test and operations system which brings the best features of software unit testing 

frameworks to the world of I&T. 

 

KEY WORDS: I&T, System Level Test, Unit Test, Ball Aerospace COSMOS 

 

INTRODUCTION 

 

This paper begins by discussing the antipatterns occurring in system level test design, then 

discusses the strategies and benefits currently being exploited with software unit level testing, 

and finishes by providing a solution to receive the same benefits during system level test. 

 

ANTIPATTERNS IN CURRENT SYSTEM LEVEL TESTING SYSTEMS 

 

Large Monolithic Test Scripts – Satellite level test scripts that run linearly from start to finish 

often exceed 100,000 lines in length. Printed out at 50 lines per page, a 100,000 line script would 

produce a 2000 page novel. The cost to adequately review such a script is astronomical, and 

therefore existing test scripts are left with significant defects.   

 

Unclear Results - Most automated testing leaves important test results intermingled in large 

output file with other irrelevant messages.  Manually wading through these logs to produce a 

final test report is very time consuming, costly and error prone. 

 

Lack of Automation – Many scripts claim to be automated test procedures, but are littered with 

required user input.  Requiring user input immediately prevents a test procedure from being truly 

automated and thus unable to be run repeatedly to ring out difficult to find problems. 



29th Aerospace Testing Seminar, October 2015 

 

FUNDAMENTALS AND BENEFITS OF SOFTWARE UNIT TESTING 

 

Software unit testing is the process where software developers verify that the functions that make 

up the programs they write are working as expected.  It is a lower level of test than system level 

test and developers have full access to the inner workings of their code (white box testing).  

Despite these differences, system level test can benefit from all of the effort that has been put 

into optimizing software unit testing for the millions of software engineers around the world.  

The following best practices from software unit testing can be applied directly to system level 

test. 

 

Short Test Cases – Good software unit tests focus on producing a large number of small test 

cases rather than a small number of large tests cases. A common goal is to have each test case 

verify one and only one expected behavior of the unit under test. This creates test cases that are 

easy to understand individually, run quickly, and allow for clear regression tests that can identify 

if any specific behavior has changed. Short test cases can also be used to allow the test procedure 

to act as the overall specification for the behavior of the system. 

 

Test Case Independence – A properly written software unit test provides test case independence 

which means that each test case can be run by itself, and that individual test cases can be run in 

any order. Assuring that each test case can run individually allows for quickly retesting any 

given feature. Some unit testing frameworks even provide a feature that runs test cases in a 

random order to make sure that they are truly independent and that no test case leaves 

unexpected side effects behind.  Test case independence is often enabled by providing test setup 

and teardown methods that ensure that the system is in the proper state before starting the test 

(setup) and is back to the expected default state after the test (teardown). 

 

Binary Results – Unit testing results are very clear (PASS/FAIL) with well-defined 

expectations.  This enables automated test report generation and makes it very clear if and where 

anything has gone wrong. 

 

Automation – Well-written software unit tests are completely automated.  The primary benefit 

being that the tests can be run at any time without user interaction.  Software unit testing often 

pushes this benefit to the limit using something called continuous integration. Continuous 

integration automatically kicks off unit testing whenever a change is made to the software. 

 

APPLYING UNIT TESTING TECHNIQUES TO SYSTEM LEVEL TEST 

 

There is every reason why the above characteristics of software unit testing should be applied to 

system level integration and test. System level testing can be broken down into short test cases 

that verify one specific feature of the system such as moving a mechanism or measuring a 

temperature. Test cases can be written independently such that they can be run in any order or by 

themselves. Test cases can produce binary results that are placed directly into an automated test 

report and they can often be fully automated such that no user interaction is required. These 

characteristics drove the implementation of the Test Runner tool and framework that is part of 

Ball Aerospace COSMOS, a suite of tools to test and operate embedded systems. 



29th Aerospace Testing Seminar, October 2015 

 

SYSTEM LEVEL TESTING USING BALL AEROSPACE COSMOS TEST RUNNER 

 

Test Suites, Groups, and Cases – COSMOS Test Runner breaks testing down into three 

categories: Test Suites, Test Groups, and Test Cases.   Test Suites are the highest level and 

generally represent the overall test procedure, e.g.  Formal Qualification Test (FQT) or Thermal 

Vacuum Test.  Test Groups are a collection of test cases around a topic, e.g. a Mechanism Test 

group or an Image Processing test group.  Finally, Test Cases test a specific behavior or 

requirement.   Test Runner allows the user to run an entire Test Suite, an individual Test Group, 

an individual Test Case, or a custom subset of Test Groups and Cases. 

 

Automated Test Report Generation - Test Runner creates an automated test report every time 

any Test Suite, Test Group, or Test Case is run.  The report contains the start and completion 

time of each test case, the result of each test case (PASS/FAIL/SKIP), specific details on any 

failures that occurred, the settings Test Runner was started with, and an overall summary of the 

total test time, total passed test cases, and total failed test cases.   The generated report is 

customizable and arbitrary text can be written to the report from within a test case.   Below is an 

example test report: 

 
--- Test Report --- 

 

Files: 

Report Filename:  

C:/COSMOS/Fqt/outputs/logs/2015_08_10_12_08_53_testrunner_results.txt 

 

Detailed Test Output Logged to:  

C:/COSMOS/Fqt/outputs/logs/2015_08_10_12_08_52_sr_FqtTestSuite_messages.txt 

 

Metadata: 

OPERATOR_NAME = Ryan Melton 

SERIAL_NUMBER = 3 

 

Settings: 

Pause on Error = true 

Continue Test Case after Error = true 

Abort Testing after Error = false 

Manual = true 

Loop Testing = false 

Break Loop after Error = false 

 

Results: 

2015/08/10 12:08:53.947: Executing FqtTestSuite  

2015/08/10 12:08:55.975: MechanismTestGroup:setup:PASS 

2015/08/10 12:09:00.077: MechanismTestGroup:test_mechanism_homing:PASS 

  Verifies requirement MECH-1 

2015/08/10 12:09:01.021: MechanismTestGroup:test_clockwise_motion:PASS 

  Verifies requirement MECH-2 

2015/08/10 12:09:02.724: MechanismTestGroup:teardown:PASS 

2015/08/10 12:09:03.077: TemperatureTestGroup:test_sensor_1:PASS 

  Verifies requirement TEMP-1 

2015/08/10 12:09:04.021: TemperatureTestGroup:test_sensor_2:PASS 

  Verifies requirement TEMP-2 



29th Aerospace Testing Seminar, October 2015 

2015/08/10 12:09:05.781: Completed FqtTestSuite  

 

--- Test Summary --- 

 

Run Time : 11.87 seconds 

Total Tests : 6 

Pass : 6 

Skip : 0 

Fail : 0 

 

  



29th Aerospace Testing Seminar, October 2015 

Variable User Interactivity – Variable user interactivitly allows scripts to be written to 

support both users in the loop and a fully automated test. Test Runner enables this by 

allowing users to select whether or not to execute manual steps before they start a procedure. It 

also provides a syntax to wrap sections of a test script in “if $manual” that allows those sections 

to only be run if manual testing is desired. This allows for formal test runs to still enable the 

manual steps, but quick checkouts or automated regressions to run fully autonomously. 

Additionally, running unattended testing or loop testing usually requires disabling manual steps. 

 

Loop Testing – Timing issues or race conditions are one of the most common types of problems 

that occur during formal test runs. For example, during a dry run a test completes successfully 

but during the formal run something takes 0.1 seconds longer and the test fails.   A great way to 

avoid these types of failures is using something called loop testing.  Loop testing allows the user 

to run specific test cases, groups, or entire suites repeatedly over and over without end.   Options 

allow the tests to record any failures that occur and try again, or to stop the procedure if anything 

goes wrong.  Performing loop testing on your test procedures before the formal test can wring 

out timing problems that cause costly anomaly investigations. 

 

 

  



29th Aerospace Testing Seminar, October 2015 

EXAMPLE TEST SUITE, GROUP, and CASES 

 

Below is an example test suite containing two test groups and several test cases that provides a 

great example for how system level tests can be organized using Test Runner.  The goal is to 

break the overall test procedure down into pieces which are as small as possible.  Each test case 

reports its PASS/FAIL status and other optional information such as the requirements it is 

verifying as demonstrated below. 
 

class MechanismTestGroup < Cosmos::Test 

  def setup 

    # One-time setup required by the group 

    # Might do something like power on the mechanism 

    # that would be needed by all test cases 

  end 

 

  def test_mechanism_homing 

    Cosmos::Test.puts "Verifies requirement MECH-1" 

    # … 

  end 

 

  def test_clockwise_motion 

    Cosmos::Test.puts "Verifies requirement MECH-2" 

    # … 

  end 

 

  def teardown 

    # One-time teardown required by the group 

    # Might do something like power off the mechanism 

    # that would be needed by all test cases 

  end 

end 

 

class TemperatureTestGroup < Cosmos::Test 

  def test_sensor_1 

    Cosmos::Test.puts "Verifies requirement TEMP-1" 

    # … 

  end 

 

  def test_sensor_2 

    Cosmos::Test.puts "Verifies requirement TEMP-2" 

    # … 

  end 

   end 

 

# This is an example Test Suite that runs all of the cases within 

# the two test groups above 

# Suites can be made that include entire test groups as below or  

# individual test cases 

class FormalQualificationTestSuite < Cosmos::TestSuite 

  def initialize 

    super() 

    add_test('MechanismTestGroup') 

    add_test('TemperatureTestGroup') 

  end 

end 



29th Aerospace Testing Seminar, October 2015 

SUMMARY 

 

Over the years there have been numerous advances in software unit testing techniques and 

frameworks and relatively little in the realm of system level testing.   By taking the lessons 

learned from unit testing, particularly by breaking down tests into small cases, fully automating 

procedures, generating automated test reports, and designing for test case independence, system 

level testing can move into the 21
st
 century and provide a much higher quality of test.   The Open 

Source Ball Aerospace COSMOS test system has a ready to use system level test framework 

within its Test Runner tool that can make these changes a reality. 

 

 
 

 



29th Aerospace Testing Seminar, October 2015 

REFERENCES 

 

Beckman, Nels Eric, “Unit Testing: Philosophy and Tools,” Institute of Software Research 

(February 1, 2007).  Retrieved from http://www.cs.cmu.edu/~aldrich/courses/654-

sp07/slides/unit_testing_lecture.pdf, August 11, 2015 

  

Hunt, Andrew and Thomas, David, “Pragmatic Unit Testing In Java with JUnit”, The Pragmatic 

Programmers 

 

 

BIOGRAPHIES 

 

Ryan Melton has been working at Ball Aerospace in Boulder Colorado and helping to develop, 

integrate, and test aerospace products for the past 14 years. Notable programs on which Ryan has 

worked include Kepler, GPM, and CALIPSO.  Ryan is very active in the open source community 

with the recent release of Ball Aerospace COSMOS as well as for many years working with the 

Ruby bindings to the Qt GUI framework, qtbindings.  He holds a Bachelor’s of Science in 

Computer Engineering from Purdue University and an MBA from Regis University.  Please 

address any questions on this paper to rmelton@ball.com. 

 

mailto:rmelton@ball.com

