
29th Aerospace Testing Seminar, October 2015

Ball Aerospace’s COSMOS

Open Source Test System

Ryan J. Melton

Ball Aerospace & Technologies Corp.

Boulder, CO

ABSTRACT

Ball Aerospace COSMOS is a free and readily available open source test and operations system.

It brings a set of functionality to Integration and Test (I&T) that has previously only been

available in proprietary and expensive COTS solutions. A set of 15 applications provide

automated procedures, realtime and offline telemetry display and graphing, post-test analysis and

CSV extraction, limits monitoring, command and telemetry handbook creation, and binary file

editing. Automated test procedures offer the full power of the Ruby programming language

allowing operators to send commands, verify telemetry, read and write files, access the network,

and even send an email on completion. Additional features include automated test report

generation, standardized meta-data collection (unit serial number, operator name), and loop

testing (executing the same test repeatedly to wring out timing and other issues). Advanced

debugging functionality allows for single-stepping through procedures, setting breakpoints, and

complete logging of all script and user interaction with the system under test. Detailed data

visualization allows for custom screen creation, line and x-y plotting of realtime data, and easy

creation of custom 3d visualizations. Post-test analysis and data extraction capabilities make

narrowing down anomalies easy. This paper will discuss all the ways COSMOS can help make

I&T and thus the Unit-under-test, better.

KEY WORDS: Open Source, Test Framework, Test Automation, Data Visualization, Graphing,

Ball Aerospace COSMOS

INTRODUCTION

Ball Aerospace COSMOS empowers engineers to easily create their own user interface for

operating and testing embedded systems. Nine years ago, I was very frustrated spending hours

trying to perform what should have been a simple task: create a telemetry display that showed

about 50 different values. This frustration resulted in the development of Ball Aerospace

COSMOS, over eight years in the making and open sourced in January 2015. COSMOS

provides a fully featured test and operations system that provides commanding, automated test

scripting, data visualization and much more. This paper discusses the huge amount of

functionality available in Ball Aerospace COSMOS and now freely available.

29th Aerospace Testing Seminar, October 2015

TERMINOLOGY

The COSMOS system uses several terms that are important to understand. Many may be

obvious to users within the aerospace industry, but the following table attempts to define these

terms clearly for everyone.

Table 1: COSMOS Terminology

Term Definition

Target A COSMOS Target is an embedded system that COSMOS can send

commands to and/or receive telemetry from.

Command A packet of information telling a target to perform an action.

Telemetry Packet A packet of information providing status from a target. Telemetry

packets are either periodically received or may be received in response

to a command.

Interface A Ruby class that knows how to send commands to and/or receive

telemetry from a target. COSMOS comes with interfaces that support

TCP/IP, UDP, and serial connections. Custom interfaces are easy to add

to the system.

Ruby The powerful dynamic programming language used to write COSMOS

applications and libraries. Also the language used in COSMOS scripts

and test procedures.

Configuration Files COSMOS uses simple plain text configuration files to define commands

and telemetry packets, and to configure each COSMOS application.

These files are easily human readable/editable and machine

readable/editable.

Packet Log Files Binary files containing either logged commands or telemetry packets.

Message Log Files Text files containing messages generated by a tool.

Tool Another name for a COSMOS application.

29th Aerospace Testing Seminar, October 2015

INCLUDED TOOLS

Ball Aerospace COSMOS comes with the following set of 15 applications that are directly

available for use with minimal to no configuration.

Command and Telemetry Server
Command and Telemetry Server acts as the hub of

the realtime portion of COSMOS. All commands

and telemetry packets pass through this tool

ensuring everything that happens is logged. It

provides realtime commanding, telemetry

reception, logging, limits monitoring, packet

routing, and system status.

Replay
Replay simulates the Command and Telemetry

Server for telemetry packet log file playback. This

enables use of any of the realtime tools with logged

data. Replay is great for playing back scenarios and

viewing them on telemetry screens.

Command Sender

Command Sender provides a graphical interface for

manually sending individual commands. Drop

down selection of every command and command

parameter in the system makes sending individual

commands easy. A history pane makes resending

previous commands easy.

Script Runner
Script Runner executes test scripts and provides

highlighting of the currently executing line.

Scripts pause if any error occurs, breakpoints can be

added, and lines can be reexecuted after a problem

has been corrected.

29th Aerospace Testing Seminar, October 2015

Test Runner
Test Runner provides a high level framework for

system level testing including automatic test report

generation. Test Runner brings the best features of

software unit level testing to system level

integration and test by breaking tests down into

easy understandable test cases. Users can execute

entire test procedures or just the specific test cases

they need to run for integration or regression tests.

Packet Viewer

Packet Viewer provides realtime visualization of

every telemetry packet that has been defined.

Values within packets are displayed in a simple

key-value format that requires no configuration. An

autocomplete search bar makes finding values easy.

Telemetry Viewer

Telemetry Viewer provides custom telemetry

screen functionality with advanced layout and

visualization widgets. Tabs, graphs, limits bars,

and other animated displays can be quickly created.

Also, Telemetry Viewer can autogenerate a base set

of screens for every telemetry packet that can be

customized as needed.

Telemetry Grapher

Telemetry Grapher provides realtime and offline

graphing of telemetry data. Supports both line and

x-y style plotting, with multiple tabs, plots, and

items per plot. Includes built-in analysis

functionality to graph min, max, difference, and

standard deviation.

29th Aerospace Testing Seminar, October 2015

Data Viewer
Data Viewer provides text based telemetry

visualization for items that don’t fit into other data

visualization paradigms. Great for scrolling log

displays and memory dumps.

Limits Monitor
Limits Monitor monitors telemetry with defined

limits and shows items that are currently out of

limits or have violated limits since the tool was

started. Expected violations can be easily ignored.

Telemetry Extractor

Telemetry Extractor extracts telemetry packet log

files into CSV data. Highly configurable and

supports batch processing to output multiple files at

once.

Command Extractor

Command Extractor extracts command packet logs

into human readable text.

29th Aerospace Testing Seminar, October 2015

Table Manager
Table Manager is a binary file editor that can be

used to create or edit configuration tables or other

binary data.

Handbook Creator
Handbook Creator creates html and pdf

documentation of available commands and

telemetry packets.

Launcher

Launcher provides a graphical user interface for

launching each of the tools that make up the

COSMOS system. Supports launching any

application that can be started from the command

line.

29th Aerospace Testing Seminar, October 2015

SYSTEM ARCHITECTURE

The following diagram shows how the 15 applications that make up the COSMOS system relate

to each other and to the targets that COSMOS is controlling.

Figure 1: COSMOS Architecture and Context Diagram

Key aspects of this architecture:

1. The COSMOS tools are grouped into four broad categories

a. Realtime Command and Scripting

b. Realtime Telemetry Visualization

c. Offline Analysis

d. Utilities

2. COSMOS can interface with many different kinds of targets. The examples shown in

this diagram include Flight Software (FSW), Ground Support Equipment (GSE),

Labview, and a Commercial Off-The-Shelf (COTS) target such as an Agilent Power

Supply. Any embedded system that provides a communication interface can be

connected to COSMOS.

3. COSMOS ships with interfaces for connecting over TCP/IP, UDP, and serial

29th Aerospace Testing Seminar, October 2015

connections. COSMOS also supports custom interfaces to connect to anything that a

computer can talk to.

4. All realtime communication with targets flows through the Command and Telemetry

Server. This ensures all commands and telemetry are logged.

5. Every tool is configured with plain text configuration files (if any configuration is

needed).

6. Project specific tools can be written using the COSMOS libraries that can interact with

the realtime command and telemetry streams through the Command and Telemetry

Server and can also do offline analysis of packet log files.

7. Cross Platform – COSMOS supports Windows, Linux, and Mac OSX.

29th Aerospace Testing Seminar, October 2015

KEY BENEFITS TO INTEGRATION AND TEST

Full Lifecycle System - Supports board level test, box level test, I&T, and operations providing

a consistent user interface throughout the full lifecycle of a product.

Everything is logged – And even more importantly, tools are provided to easily interpret and

use the logs. Whenever an anomaly occurs there are tools already written that are ready to dig

into the logs and help figure out what happened.

Superb Data Visualization – Anyone can create great telemetry displays, graph data in

realtime, and provide an excellent sense of situational awareness – all without any programming

required.

Powerful Test Scripting – COSMOS comes with a simple API that makes sending commands

and checking telemetry easy. However, you are not constrained by your test scripting language.

COSMOS scripts are written in Ruby, a modern, fully functional scripting language. This

allows you to read and write files, and perform live processing that most other systems force you

to run offline.

Powerful Test Reporting and Organization – COSMOS Test Runner can produce very reliable

test procedures that allow the user to easily execute the entire procedure or only a subset needed

for a regression test. Automated test reports created at the end of every run make it very clear

that everything passed successfully or where problems occurred.

SUMMARY

Ball Aerospace COSMOS is a free and open source test and operations system that is

immediately available for use. It provides a wealth of functionality much of which is not even

available in expensive proprietary tools. For more information and to get started with Ball

Aerospace COSMOS please see http://cosmosrb.com.

http://cosmosrb.com/

29th Aerospace Testing Seminar, October 2015

REFERENCES

Melton, Ryan, “Ball Aerospace COSMOS” Retrieved from http://cosmosrb.com August 9, 2015

BIOGRAPHIES

Ryan Melton has been working at Ball Aerospace in Boulder Colorado and helping to develop,

integrate, and test aerospace products for the past 14 years. Notable programs on which Ryan has

worked include Kepler, GPM, and CALIPSO. Ryan is very active in the open source community

with the recent release of Ball Aerospace COSMOS as well as for many years working with the

Ruby bindings to the Qt GUI framework, qtbindings. He holds a Bachelor’s of Science in

Computer Engineering from Purdue University and an MBA from Regis University. Please

address any questions on this paper to rmelton@ball.com.

http://cosmosrb.com/
mailto:rmelton@ball.com

